Optical diagnostics study of air flow and powder fluidisation in Nexthaler®--Part I: Studies with lactose placebo formulation.

نویسندگان

  • I Pasquali
  • C Merusi
  • G Brambilla
  • E J Long
  • G K Hargrave
  • H K Versteeg
چکیده

Effective drug delivery to the lungs by a DPI device requires the air-stream through the device to have sufficient power to aerosolise the powder. Furthermore, sufficient turbulence must be induced, along with particle-wall and particle-particle collisions, in order to de-aggregate small drug particles from large carrier particles. As a result, the emitted and the fine particle doses produced by many commercially available DPI devices tend to be strongly affected by the natural inter-patient variability of the inhaled air flow. The Nexthaler® is a multi-dose breath-actuated dry-powder inhaler with minimum drug delivery-flow rate dependency and incorporating a dose protector. The actuation mechanism of the dose-protector ensures that the dose is only exposed to the inhaled air flow if the flow has sufficient power to cause complete aerosolisation. For this study, a proprietary lactose placebo powder blend was filled into "transparent" Nexthaler® to allow application of high-speed imaging and particle image velocimetry (PIV) techniques to successfully interrogate and reveal details of the powder entrainment and emission processes coupled with characterisation of the flow environment in the vicinity of the mouthpiece exit. The study showed that fluidisation of the bulk of the powder occurs very quickly (∼20ms) after withdrawal of the dose protector followed by powder emission from the device within ∼50ms thereafter. The bulk of the metered placebo dose was emitted within 100-200ms. The visualisation study also revealed that a very small fraction of powder fines is emitted whilst the dose protector still covers the dosing cup as the flow rate through the device accelerates. The PIV results show that the flow exiting the device is highly turbulent with a rotating flow structure, which forces the particles to follow internal paths having a high probability of wall impacts, suggesting that the flow environment inside the Nexthaler® DPI will be very beneficial for carrier-drug de-aggregation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Flow Rate on In Vitro Aerodynamic Performance of NEXThaler® in Comparison with Diskus® and Turbohaler® Dry Powder Inhalers

BACKGROUND European and United States Pharmacopoeia compendial procedures for assessing the in vitro emitted dose and aerodynamic size distribution of a dry powder inhaler require that 4.0 L of air at a pressure drop of 4 kPa be drawn through the inhaler. However, the product performance should be investigated using conditions more representative of what is achievable by the patient population....

متن کامل

Air classifier technology (ACT) in dry powder inhalation. Part 1. Introduction of a novel force distribution concept (FDC) explaining the performance of a basic air classifier on adhesive mixtures.

Air classifier technology (ACT) is introduced as part of formulation integrated dry powder inhaler development (FIDPI) to optimise the de-agglomeration of inhalation powders. Carrier retention and de-agglomeration results obtained with a basic classifier concept are discussed. The theoretical cut-off diameter for lactose of the classifier used, is between 35 and 15 microm for flow rates ranging...

متن کامل

Evaluation of the effect of granulation processing parameters on the granule properties: Lactose- Cornstarch case study

Understanding the relationship between processing parameters of fluidized bed wet granulation and the characteristics of intermediate and final products is crucial in the pharmaceutical processes. This research examined a fluidized bed wet granulation process containing a cornstarch solution as binder and lactose particles as powder. The design of experiment (DoE) was performed according to an ...

متن کامل

Total Surface Energy Distributions Determined Using Inverse Gas Chromatography at Finite Dilution for Understanding the De-agglomeration of Lactose Powders

Purpose: This study determined total surface energy distributions using an Inverse Gas Chromatography (IGC) to understand the de-agglomeration of fine lactose powders commonly used in dry powder inhaler formulations. Methods: The particle size distribution (PSD) of two lactose samples, Lactohale 300 (Lac A) and micronized lactose (Lac B), were determined by laser diffraction in liquid media, an...

متن کامل

Aerated bunker discharge of fine dilating powders

The discharge rate of coarse powders (mean particle size >500 pm) from bunkers without aeration can be described by both empirical relations and theoretical models. In the case of small particles the discharge rate is largely overestimated. As the powder dilates during flow a negative pressure gradient develops near the hopper outlet, inducing an air flow into the hopper. This extra drag force ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of pharmaceutics

دوره 496 2  شماره 

صفحات  -

تاریخ انتشار 2015